## TFT Liquid Crystal Interface Monolithic IC MM1288CQ

## Outline

This IC was developed as an interface IC for video equipment having a small monitor. This IC performs $\gamma$ correction and polarity identification to convert RGB signals into TFT liquid crystal RGB signals. A common inversion circuit and sync separation circuit are built-in.

## Features

1. Power supply voltage $+13 \mathrm{~V}, 0 \mathrm{~V}$ or $+5 \mathrm{~V},-8 \mathrm{~V}$
2. Built-in polarity ID circuit
3. Built-in $\gamma$ correction circuit
4. Common inversion circuit built-in
5. 2 input switch built-in
6. Built-in contrast adjustment circuit
7. Built-in sync separation circuit

## Package

QFP-48A

## Applications

1. Navigation systems
2. Pachinko games (models with color TFT)
3. Videophones, conferencing systems
4. Game equipment
5. Others

## Block Diagram



Pin Description

| Pin no. | Pin name | Function | Internal equivalent circuit diagram | Pin no. | Pin name | Function | Internal equivalent circuit diagram |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1, 6 <br> 11, 12 <br> 13, 23 <br> 24, 25 <br> 36, 37 <br> 38, 48 | NC |  |  | 14 | SYNC OUT | Sync output |  |
|  |  |  |  | 15 | TIME CONSTANT | Sync integration | $\underbrace{-0_{0}^{V c c} 1}_{i}$ |
| $\begin{aligned} & 2,3 \\ & 4,7 \\ & 8,9 \end{aligned}$ | RGB IN | RGB input |  |  |  |  |  |
|  |  |  | $8 \bigcirc 8$ | 16 | SYNC IN | Sync input | $\xi^{V / c 1}$ |
| 5 | GND | GND pin |  |  |  |  |  |
| 10 | SYNC SEP IN | Sync separation input |  |  |  |  | $\bigcirc$ |
|  |  |  |  | $\begin{gathered} 17,18 \\ 44 \end{gathered}$ | $\begin{gathered} \text { CLAMP } \\ \text { (RGB) } \end{gathered}$ | Clamp |  |



Note : GAMMA1, GAMMA2 (Pins 34, 39)
DC voltage applied to these pins sets $\gamma$ correction DC voltage gain change point.

$\gamma$ correction
Output is given characteristics as shown at left according to LCD panel characteristics.
Pins 34 and 39 adjust the slope change position.

INV (40PIN)
The primary color output (pins $29,31,33$ ) and COMMON output (pin 27) are inverted according to the inversion pulse input to this pin. When COMMON INV (pin 26) has Vcc2 potential, the relationships between the input, output and inversion pulse are as shown in the figure below.


Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Item | Symbol | Ratings | Units |
| :---: | :---: | :---: | :---: |
| Storage temperature | TSTG | $-40 \sim+125$ | ${ }^{\circ} \mathrm{C}$ |
| Operating temperature | Topr | $-20 \sim+85$ | ${ }^{\circ} \mathrm{C}$ |
| Power supply voltage | Vcc1-GND | 6 | V |
|  | Vcc2-VEE | 15 | V |
|  | GND-VEE | 10 | V |
| Allowable loss 1 | Pd 1 | 500 | mW |
| Allowable loss 2 | Pd 2 | $1000 *$ | mW |

* $47 \mathrm{~mm} 75 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ printed circuit board (glass epoxy) board mounted.
(Except where noted otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, All SW : A, Vcc1=5.0V, Vcc2=13V, GND=0V, Vee=0V, T16; SG1, T40; SG2, V46=3.5V)

| Item | Symbol | Measurement conditions |  | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc1 pin operating power supply voltage range | Vcc1 |  |  | 4.5 | 5.0 | 5.5 | V |
| Operating power supply voltage | Vcc2+2 |  |  | 10.0 | 13.0 | 14.0 | V |
| range when on power supply +2 | Vee+2 |  |  |  | GND |  | V |
| Operating power supply voltage | Vcc2 $\pm$ |  |  | 4.5 | 5.0 | 5.5 | V |
| range when on power supply $\pm$ | Veet |  |  | -8.5 | -8.0 | -6.5 | V |
| Consumption current 1 | Icc1 |  | Vcc1=5V |  | 8.5 | 15.0 | mA |
| Consumption current 2 | Icc2 |  | Vcc2=13V |  | 17.0 | 22.0 | mA |
| Voltage gain | Gv | SW2~4, 7~9; <br> B <br> T2~4, 7~9; <br> SG3 <br> Adjust V46 <br> so that T29, <br> 31 and 33 <br> amplitude is <br> 8V. | Measure ratio of SG3 and T29, 31, 33 sine waves. |  | 17 |  | dB |
| Voltage gain difference between inputs | Gvsw |  | Measure T29, 31, 33 sine wave ratio when SW47: B and V47 $=0 \mathrm{~V}$ and 5 V . |  |  | 0.7 | dB |
| Reversed/non-reversed voltage gain difference | Gvinv |  | Measure T29, 31, 33 sine wave ratio when $\mathrm{T} 40=0 \mathrm{~V}$ and 5 V . |  |  | 0.7 | dB |
| RGB voltage gain differences | Gvrgb |  | Measure T29, 31, 33 sine wave ratio. |  |  | 0.7 | dB |
| Maximum voltage gain | Gv max. |  | SW43 ; B, V43=4.5V Measure SG3 and T29, 31,33 sine wave ratio. | 18 |  |  | dB |
| Minimum voltage gain | Gv min. |  | SW43 ; B, V43=4.5V Measure SG3 and T29, 31,33 sine wave ratio. |  |  | 13 | dB |
| Subcontrast change | $\triangle$ Gvsub | SW2~4, 19, 45 ; B, T2~4; SG3 <br> Adjust V46 so that T29, 31 and 33 amplitude is 8 V . Measure ratio between T29, 31 and T33 sine waves when V19 and 45 are $0.5 \sim 4.5 \mathrm{~V}$. |  |  | $\pm 1$ |  | dB |
| Input dynamic range | VIndr | SW2~4, 43 ; B, T2~4; SG3, V43=1.5V Adjust V46 so that T29, 31 and 33 amplitude is 9V. Vary SG3 amplitude and measure SG3 amplitude at the point where T29, 31 and 33 signals start to be saturated. |  | 1.5 | 1.9 |  | VP-P |
| Switch crosstalk | Ctsw | SW2~4, 43, 47; B, T2~4; SG4, V47=5V Adjust V46 so that T29, 31 and 33 amplitude is 8 V , and adjust V 43 so that T29, 31 and 33 sine wave amplitude is 5 Vp-p. Vary SW47 in this state and measure 1 MHz spectrum change. |  |  | -50 | -44 | dB |
|  |  | SW7~9, 43, 47 ; B, T7~9; SG4, V47=5V Adjust V46 so that T29, 31 and 33 amplitude is 8 V , and adjust V 43 so that T29, 31 and 33 sine wave amplitude is 5 Vp-p. Vary SW47 in this state and measure 1 MHz spectrum change. |  |  | -50 | -44 | dB |


| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crosstalk between RGB | $\mathrm{Ctrgb}^{\text {a }}$ | SW2;B T2;SG4 <br> Adjust V46 so that T33 amplitude is 8 V , and adjust V43 so that T33 sine wave amplitude is $5 V_{\text {P-r. }}$. Then measure the difference between T33 and T29, 31 signals 1 MHz spectrum. Measure in the same way for $G \rightarrow B, R$ and $B \rightarrow R, G$. |  | -48 | -40 | dB |
| Output dynamic range ( $\mathrm{B}-\mathrm{B}$ ) | Vdrb-b | SW2~4; B, T2~4; SG4, V46=0.5V Measure T29, 31 and 33 signals. | 10 | 11 |  | Vp-P |
| Output dynamic range (B-W) | Vdrb-w | SW2~4, 43 ; B, T2~4; SG4, V43=4.5V <br> Adjust V46 so that T29, 31 and 33 amplitude is 9 V and measure T29, 31 and 33 sine wave amplitude. | 6.0 | 7.0 |  | Vp-P |
| Output center voltage | Vc | Adjust V46 so that T29, 31 and 33 amplitude is 0 V and measure T29, 31 and 33 DC voltage. | 6.3 | 6.5 | 6.7 | V |
| Output center voltage change | $\triangle \mathrm{Vc}$ | Adjust V46 so that T29, 31 and 33 amplitude is 0 V and measure the difference $\mathrm{T} 29,31$ and 33 DC voltage when $\mathrm{V} 35=5 \mathrm{~V}$ and 8 v |  | 3.0 |  | V |
| Bright change | $\triangle \mathrm{V}_{\text {Brit }}$ | Measure the difference between T29, 31 and 33 signal clamp levels when $\mathrm{V} 46=0.5 \mathrm{~V}$ and 4.5 V . | 10.0 | 13.5 |  | V |
| Amplitude difference between bright RGB signals | Vbrit rgb | Adjust V46 so that T31 amplitude is 5.7 V and measure T29 and 33 amplitude ratio. | -0.5 |  | 0.5 | dB |
| Sub-bright change | $\triangle \mathrm{V}$ subb | After adjusting V46 so that T29, 31 and 33 amplitude is 6 V , with SW21 and $42: \mathrm{B}$, vary V21 and 42 between $8 \sim 10 \mathrm{~V}$ and measure the maximum value of the difference between T31 and T29, 33 amplitudes. |  | $\pm 1$ |  | V |
| Frequency characteristic | fmax. | SW2~4, 29, 31, 33 ; B, T2~4; SG4 Adjust V46 so that T29, 31 and 33 amplitude is 8 V , then adjust V 43 so that T29, 31 and 33 sine wave amplitude is 5 V p-p. Vary sine wave frequency at measure cutoff frequency. | 4.0 | 5.0 |  | MHz |
| COMMON output amplitude | Vсом | Measure T27 amplitude. | 6.0 | 6.5 |  | VP-P |
| COMMON output maximum amplitude | Vcom max. | SW28; B, V28=12V Measure T27 amplitude. | 8.0 |  |  | VP-P |
| COMMON output minimum amplitude | Vcom min. | SW28; B, V28=0V T27 amplitude. | -0.1 | 0 | 0.1 | VP-P |
| COMMON output center maximum voltage | Vco max. | SW22, 28 ; B, V22=5V, V28=0V <br> Measure T27 amplitude. | 8.5 |  |  | V |
| COMMON output center minimum voltage | Vco min. | SW22, 28 ; B, V22=0.5V, V28=0V <br> Measure T27 DC voltage |  |  | 4.5 | V |
| Sync separation input sensitivity current | Iss | Increase current flowing out on T10, and measure outflow current when T14 voltage changes from high to low. | -50 | -35 | -20 | $\mu \mathrm{A}$ |
| Sync separation output low voltage | VsynL | Measure T14 voltage when 5 V is applied to T10. |  | 0.2 | 0.4 | V |
| Sync input threshold voltage | Vтн15 | Measure T14 inverted input voltage when T16 voltage is changed from $0 \rightarrow 5 \mathrm{~V}$. | 1.4 | 1.9 | 2.4 | V |
| Sync input input current | I15 | SW16 ; B Apply 0V to T16 and measure I16. | -1.5 |  |  | $\mu \mathrm{A}$ |
| Subcontrast input current | I18, I41 | SW19, 45, 46 ; B <br> Measure I19 and 45 when V19 and 45 are 0.5 V and 4.5 V . | -60 |  | 70 | $\mu \mathrm{A}$ |


| Item | Symbol | Measurement conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sub-bright input current | I20, I38 | SW21, 42, 46 ; B <br> Measure I 21 and 42 when V 21 and 42 are 7.5 V and 10.5 V . | -50 |  | 40 | $\mu \mathrm{A}$ |
| COMMON DC VOLT input current | I21 | SW22; B <br> Measure I22 when V22=0V. | -100 |  |  | $\mu \mathrm{A}$ |
| COMMON INV threshold voltage | Vth24 | SW26; B <br> Vary V26 between 0~13V and measure V26 when T27 phase inverts. | 6.0 | 6.5 | 7.0 | V |
| COMMON INV input current | I24 | SW26; B <br> Measure I26 when V26=0 and 13V. | -90 |  | 90 | $\mu \mathrm{A}$ |
| COMMON SWING input current | I26 | SW28; B <br> Measure I26 when V26=9 and 12V. | -60 |  | 60 | $\mu \mathrm{A}$ |
| GAMMA1 input voltage | I32 | SW34; B <br> Measure I34 when V34=11V. |  |  | 6 | $\mu \mathrm{A}$ |
| GAMMA2 input voltage | I35 | SW39; B <br> Measure I39 when V39=1V. | -6 |  |  | $\mu \mathrm{A}$ |
| INV threshold voltage | Vтн36 | Vary T40 voltage from $0 \rightarrow 5 \mathrm{~V}$ and measure the voltage when T 27 phase inverts. | 2.5 | 3.0 | 3.5 | V |
| INV input current | I36 | Measure I40 when V40 is 0V. | -2 |  |  | $\mu \mathrm{A}$ |
| Contrast input current | I39 | SW43; B <br> Measure I 43 when V 43 is 0.5 V and 4.5 V . | -60 |  | 70 | $\mu \mathrm{A}$ |
| Bright input current | I42 | Measure I46 when V46=1.7V. |  |  | 3 | $\mu \mathrm{A}$ |
| CENTER DC input current | I35 | Measure I35 when V35=Vcc2 | 105 | 110 | 165 | $\mu \mathrm{A}$ |
| SW threshold voltage | Vтн47 | SW2~4, 47; B, T2~4; SG3 <br> Adjust V46 so that T29, 31 and 33 amplitude is 8 V . Vary V47 voltage from $0 \rightarrow 5 \mathrm{~V}$ and measure V47 when T29, 31 and 33 sine waves disappear. | 0.8 | 1.4 | 2.0 | V |
| SW input current | I43 | SW47; B Measure I47 when V47=0V. |  |  | 4.5 | $\mu \mathrm{A}$ |
| GAMMA1 fluctuation | $\triangle \mathrm{V} 34$ | SW2~4, 34, 43; B, T2~4; SG5 <br> Adjust V43 so that T29, 31 and 33 amplitude is 3 V . Vary V34 voltage from $3 \rightarrow 6 \mathrm{~V}$ and measure the amount of T29, 31 and 33 voltage change. | 0.8 | 1.2 | 2.1 | V |
| GAMMA2 fluctuation | $\triangle \mathrm{V} 39$ | SW2, 3, 4, 39, 43; B, T2~4; SG5 <br> Adjust V43 so that T29, 31 and 33 amplitude is 3 V . Vary V39 voltage from $6.2 \rightarrow 8 \mathrm{~V}$ and measure the amount of T29, 31 and 33 voltage change. | 0.8 | 1.2 | 2.1 | V |
| H-to-L common transport delay time | tPHL |  |  |  | 2 | $\mu \mathrm{S}$ |
| L-to-H common transport delay time | tPLH | SW27, 28 ; B, T40 ; SG6 |  |  | 2 | $\mu \mathrm{S}$ |
| COMMON fall time | tThL | Adjust V28 so that T 27 amplitude is 6 V . |  | 2 | 3 | $\mu \mathrm{S}$ |
| COMMON rise time | tTlh |  |  | 2 | 3 | $\mu \mathrm{S}$ |
| Difference in COMMON rise and fall times | $\Delta \mathrm{t}$ T | $\Delta \mathrm{t}$ T $=1$ tTHL-tTLH |  |  | 2 | $\mu \mathrm{S}$ |
| H-to-L primary color signal transport delay time | tPHL |  |  |  | 2 | $\mu \mathrm{S}$ |
| L-to-H primary color signal transport delay time | tply | Adjust V46 so that T29, 31 and 33 |  |  | 2 | $\mu \mathrm{S}$ |
| Primary color signal fall time | tTHL |  |  | 1 | 2 | $\mu \mathrm{S}$ |
| Primary color signal rise time | tтLH |  |  | 1 | 2 | $\mu \mathrm{S}$ |
| Difference in primary color signal rise and fall times | $\triangle \mathrm{t}$ T | $\Delta \mathrm{t}=1 \mathrm{t}_{\text {THL- }}$ till |  |  | 1 | $\mu \mathrm{S}$ |

## Example of Power Supply Use



## Input Signal Waveforms



SG6



## Application Circuits

Basic Connection Diagram 1 (Vcc1=5V, Vcc2=13V)


Basic Connection Diagram 2 (Vcc=5V, Vee=-8V)


